A Novel Chiral Pentamine Ligand for Enantioselective -Alkylation of Acyclic Lithium Amide Enolates. Optimization of Chiral Ligands for Asymmetric Reactions Using Solid-Phase Organic Synthesis

Jun-ichi Matsuo, Kazunori Odashima, and Shu Kobayashi*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Supporting Information

Experimental Procedures, Physical Data of the Products and Ligands

General: All melting points are uncorrected. IR spectra were recorded on a Jasco FT/IR-610 spectrometer. NMR spectra were recorded on a JEOL JNM-LA-300 FT-NMR system or a JEOL JNM-LA-400 FT-NMR system. Mass spectra (MS) were recorded on a JEOL JMS-DX-300. High resolution mass spectral (HRMS) analyses were done by using a JEOL JMS-SX-102. Optical rotations were measured by a Jasco P-1010 polarimeter. Acyclic propionamides were prepared by using the method of Heathcock and co-workers¹⁾. Toluene used in enentioselevtive alkylation reactions was distilled from sodium/benzophenone immediately prior to use. Alkyl lithium reagents (*n*-BuLi and MeLi-LiBr) were purchased from Kanto Chemical Co., Inc. A chiral tetradentate amine $(3)^{2)}$ and a chiral pentadentate amine $(4)^{3)}$ were prepared as reported. Trithyl chloride-type resin was prepared from polystyrene (1% DVB, 200~400 mesh, purchased from Advanced Chemtech) by a literature method⁴⁾.

N-(polymer supported trithyl)-piperazine

A mixture of trithyl chloride type-resin (62.3 g, 0.88 mmol/g), piperazine (52.0 g, 0.60 mol) and THF (400 mL) was refluxed for 3.5 hours. After cooling to room temperature, the resin was washed with CH_2Cl_2 (200 mL x 2), DMF (100 mL x 3), CH_2Cl_2 (200 mL x 2), and Et_2O (200 mL x 2), and then dried *in vacuo* to give *N*-(polymer supported trithyl)-piperazine (69.0 g, 0.64 mmol/g).

Synthesis of chiral pentadentate amines by solid-phase peptide synthesis (22)

To a stirred suspension of *N*-(polymer supported trithyl)-piperazine (1.21 g, 0.64 mmol/g, 0.77 mmol) and CH₂Cl₂ (15 mL), were added PyBOP (528 mg, 1.01 mmol), Fmoc-Leu (355 mg, 1.00 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 10 hours at room temperature. After washing the resin with CH₂Cl₂, to a stirred suspension of the washed resin and CH₂Cl₂ (15 mL), were added PyBOP (525 mg, 1.01 mmol), Fmoc-Leu (356 mg, 1.01 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 4 hours. After the resin was washed with CH₂Cl₂, the resin was suspended with 20% piperidine in DMF solution (5 mL), and the suspension was stirred for 10 min. After the resin was washed with CH₂Cl₂, to a stirred suspension of the washed resin and CH₂Cl₂ (15 mL), were added PyBOP (524 mg, 1.01 mmol), Fmoc-Phe (392 mg, 1.01 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 4 hours. After the resin was suspension of the washed resin and CH₂Cl₂ (15 mL), were added PyBOP (524 mg, 1.01 mmol), Fmoc-Phe (392 mg, 1.01 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 4 hours. After the resin was suspension of the washed resin and CH₂Cl₂ (15 mL), were added PyBOP (524 mg, 1.01 mmol), Fmoc-Phe (392 mg, 1.01 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 4 hours. After the resin was washed with CH₂Cl₂, the resin was suspended (0.18 mL, 1.03 mmol), and the mixture was stirred for 4 hours. After the resin was washed with CH₂Cl₂, the resin was washed with CH₂Cl₂, the resin was suspended with 20% piperidine in DMF solution (5 mL).

mL), and the suspension was stirred for 10 min. After the resin was washed with CH_2Cl_2 , to a stirred suspension of the washed resin and CH_2Cl_2 (15 mL), were added PyBOP (521 mg, 1.00 mmol), Fmoc-Pro (356 mg, 1.10 mmol) and DIPEA (0.18 mL, 1.03 mmol), and the mixture was stirred for 9 hours. After the resin was washed with CH_2Cl_2 , the resin was suspended with 20% piperidine in DMF solution (5 mL), and this suspension was stirred for 10 min. After the resin was washed with CH_2Cl_2 , to a stirred suspension of the washed resin and CH_2Cl_2 (15 mL), were added PyBOP (528 mg, 1.01 mmol), *N*,*N*-dimethylgrycine hydrochloride (150 mg, 1.07 mmol) and DIPEA (0.36 mL, 2.06 mmol), and the mixture was stirred for 2 hours. After the resin was suspended with CH_2Cl_2 , the resin was suspended with 20% trifluoroacetic acid in CH_2Cl_2 solution (10 mL), and the mixture was stirred for 2 hours. After filtration, the filtrate was concentrated *in vacuo* to give a yellow oil. A mixture of the residual oil and saturated aqueous NaHCO₃ was extracted with $CHCl_3$ (20 mL x 3), and the combined organic extracts were dried with anhydrous K_2CO_3 , filtered, and concentrated *in vacuo* to give a pale yellow oil.

To the N-unprotected piperazine-tetrapeptide, water (10 mL), formic acid (0.15 mL, 3.98 mmol) and 37% aqueous formaldehyde (0.65 mL) were added, and the mixture was refluxed for 1 hour. The reaction mixture was basified with K_2CO_3 under ice-water cooling, saturated with NaCl, and extracted with CHCl₃ (20 mL x 3). The combined organic extracts were dried with anhydrous K_2CO_3 , filtered, and concentrated *in vacuo* to give a pale yellow oil. The residual oil was purified by preparative TLC (ether / isopropylamine) to give a corresponding N-methyl-piperazine-tetrapeptide (378 mg, 0.70 mmol, 91%). ¹H NMR (400 MHz, CDCl₃): 0.89 (3H, d, *J* = 6.3 Hz), 0.96 (3H, d, *J* = 6.3 Hz), 1.05 ~ 1.10 (1H, m), 1.18 ~ 1.23 (1H, m), 1.3 ~ 1.7 (3H, m), 1.7 ~ 2.0 (2H, m), 2.1 ~ 2.4 (4H, m), 2.29 (6H, s), 2.31 (3H, s), 2.9 ~ 3.7 (10H, m), 4.50 ~ 4.57 (1H, m, Pro-aym-H), 4.68 ~ 4.75 (1H, m, Phe-asym-H), 4.87 ~ 4.95 (1H, m, Leu-asym-H), 6.91 (1H, d, *J* = 8.5 Hz), 7.1 ~ 7.3 (5H, m), 7.36 (1H, d, *J* = 8.1 Hz). ¹³C NMR (100 MHz, CDCl₃, Major rotamer): 22.08, 23.31, 24.55, 24.85, 27.15, 37.66, 41.99, 42.46, 45.36, 45.80, 45.99, 46.71, 47.03, 54.01, 54.60, 55.03, 59.89, 62.05, 126.62, 128.29, 129.23, 136.97, 170.15, 170.19, 170.29, 171.26.

Under Ar atmosphere, to a solution of the N-methyl-piperazine-tetrapeptide (378 mg, 0.70 mmol) in THF (10 mL) was added BH₃-THF (1.0 *M*, 13.9 mL, 13.9 mmol), and the mixture was refluxed for 20 hours. The reaction was quenched by adding MeOH (14 mL) under ice-water cooling, and the solvents were evaporated. 5% aqueous HCl (20 mL) was added to the residue, and the mixture was refluxed for 1 hour. The reaction mixture was basified with K₂CO₃, saturated with NaCl, and extracted with CHCl₃ (20 mL x 3). The combined organic extracts were dried with anhydrous K₂CO₃, filtered and concentrated *in vacuo* to give a pale yellow oil. This crude product was purified by preparative TLC (hexane / isopropylamine) to give a chiral pentadentate amine (**22**) (254 mg, 0.52 mmol, 74%). ¹H NMR (300 MHz, CDCl₃): 0.85 (3H, d, *J* = 5.3 Hz), 0.86 (3H, d, *J* = 5.5 Hz), 1.0 ~ 1.3 (2H, m), 1.5 ~ 2.0 (5H, m), 2.0 ~ 3.0 (26H, m), 2.23 (6H, s), 2.26 (3H, s), 3.1 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.77, 22.91, 23.28, 24.84, 29.20, 39.50, 43.02, 45.87, 46.03, 50.11, 51.38, 52.45, 53.64, 54.57, 55.20, 58.76, 60.02, 63.31, 64.93, 125.94, 128.23, 129.29, 139.56.

5; ¹H NMR (300 MHz, CDCl₃): 2.12 (6H, s), 2.23 (3H, s), 2.0 ~ 2.8 (30H, m), 7.1 ~ 7.3 (15H, m). ¹³C NMR (75 MHz, CDCl₃): 39.40, 39.53, 39.69, 44.81, 45.39, 46.02, 50.36, 50.65, 55.22, 56.47, 59.42, 59.74, 62.09, 125.93, 125.99, 128.15, 128.27, 129.20, 129.29, 129.36, 139.34, 139.36, 139.44.

6; ¹H NMR (300 MHz, CDCl₃): 1.5 ~ 2.0 (4H, m), 2.12 (6H, s), 2.263 (3H, s), 2.0 ~ 2.78 (29H, m), 2.91 (1H, dd, *J* = 4.7, 13.5 Hz), 3.1 (1H, m), 7.0 ~ 7.3 (10H, m). ¹³C NMR (75 MHz, CDCl₃): 23.09, 30.27, 39.26, 39.50, 44.66, 45.29, 45.89, 50.13, 53.71, 54.92, 55.27, 59.23, 59.25, 59.73, 59.96, 62.12, 64.03, 125.82, 125.89, 128.12, 128.18, 129.07, 129.29, 139.21, 139.83.

7; ¹H NMR (300 MHz, CDCl₃): $1.5 \sim 2.8$ (31H, m), 2.09 (6H, s), 2.19 (3H, s), 2.19 (3H, s), 2.96 (1H, dd, J = 4.4, 13.8 Hz), 3.1 (1H, m), 7.1 ~ 7.3 (10H, m). ¹³C NMR (75 MHz, CDCl₃):

4

23.23, 29.02, 39.65, 39.73, 45.21, 45.55, 45.94, 52.06, 55.16, 55.26, 56.87, 59.33, 59.52, 59.96, 61.9, 65.04, 125.95, 128.95, 128.17, 128.23, 129.31, 129.39, 139.29, 139.89.

8; ¹H NMR (300 MHz, CDCl₃): 1.5 (1H, m), 1.7 ~ 1.8 (3H, m), 2.21 (6H, s), 2.24 (3H, s), 2.1 ~ 3.0 (28H, m), 3.1 (1H, m), 7.1 ~ 7.3 (10H, m). ¹³C NMR (75 MHz, CDCl₃): 22.75, 28.87, 39.18, 39.45, 45.59, 45.75, 50.04, 50.91, 53.35, 54.30, 54.90, 56.25, 58.40, 59.82, 61.92, 64.64, 125.72, 125.81, 127.95, 128.08, 129.06, 129.15, 139.07, 139.23.

9; ¹H NMR (300 MHz, CDCl₃): 1.5 ~ 2.0 (8H, m), 2.0 ~ 2.6 (23H, m), 2.25 (9H, s), 2.7 ~ 2.8 (2H, m), 3.0 (1H, m), 3.1 (2H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.63, 22.72, 28.49, 29.90, 39.51, 45.73, 45.87, 51.19, 53.71, 54.42, 54.69, 55.06, 56.71, 58.60, 60.39, 61.74, 63.50, 64.89, 125.68, 127.91, 129.20, 139.16.

10; ¹H NMR (300 MHz, CDCl₃): 1.4 ~ 1.9 (8H, m), 2.22 (6H, s), 2.26 (3H, s), 2.1 ~ 2.7 (23H, m), 2.8 ~ 2.9 (3H, m), 3.0 ~ 3.1 (2H, m), 7.2 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.69, 23.13, 28.96, 30.19, 39.50, 45.76, 45.93, 51.47, 53.37, 53.77, 54.42, 54.97, 55.34, 58.60, 59.23, 59.88, 62.01, 64.10, 64.60, 125.73, 128.04, 129.20, 139.82.

11; ¹H NMR (300 MHz, CDCl₃): 1.6 ~ 2.0 (4H, m), 2.24 (6H, s), 2.25 (3H, s), 2.1 ~ 3.0 (27H, m), 3.1 ~ 3.2 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.86, 28.84, 39.45, 45.66, 45.85, 47.26, 50.06, 53.28, 53.36, 54.50, 55.05, 56.01, 58.58, 61.77, 64.42, 125.72, 127.96, 129.15, 139.07.

12; ¹H NMR (400 MHz, CDCl₃): 1.04 (3H, d, *J* = 6.1 Hz), 1.5 ~ 2.0 (4H, m), 2.24 (6H, s), 2.26 (3H, s), 2.1 ~ 3.0 (26H, m), 3.1 ~ 3.2 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 18.53, 22.86, 29.16, 39.44, 45.74, 45.94, 50.44, 53.17, 53.45, 53.93, 54.48, 54.54, 55.17, 55.24, 58.63, 61.80, 64.72, 125.80, 128.01, 129.32, 139.12.

13; ¹H NMR (400 MHz, CDCl₃): 0.86 (3H, d, *J* = 6.8 Hz), 0.90 (3H, d, *J* = 6.8 Hz), 1.5 ~ 2.0 (4H, m), 2.23 (6H, s), 2.26 (3H, s), 2.2 ~ 3.0 (27H, m), 3.1 ~ 3.2 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 18.30, 18.93, 22.94, 28.97, 29.14, 39.72, 45.82, 45.87, 47.84, 51.60, 55.22, 56.54, 58.78, 62.05, 63.66, 125.86, 128.12, 129.32, 139.38.

14; ¹H NMR (400 MHz, CDCl₃): 0.89 (3H, d, *J* = 0.7 Hz), 0.90 (3H, d, *J* = 1.7 Hz), 1.0 ~ 1.5 (2H, m), 1.5 ~ 2.0 (4H, m), 2.24 (6H, s), 2.26 (3H, s), 2.1 ~ 3.0 (27H, m), 3.1 ~ 3.2 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 23.07, 23.56, 29.30, 39.74, 42.89, 45.92, 46.09, 50.84, 53.40, 53.72, 54.65, 54.73, 55.29, 55.38, 56.08, 56.59, 58.81, 62.08, 62.64, 64.86, 125.93, 128.18, 129.41, 139.4.

15; ¹H NMR (300 MHz, CDCl₃): 1.5 ~ 1.9 (4H, m), 2.23 (6H, s), 2.25 (3H, s), 2.1 ~ 2.9 (28H, m), 3.1 (1H, m), 7.1 ~ 7.3 (10H, m). ¹³C NMR (75 MHz, CDCl₃): 23.00, 28.83, 39.21, 39.69, 45.80, 46.00, 50.48, 50.94, 53.21, 54.62, 55.17, 56.51, 58.63, 59.66, 62.06, 64.69, 125.87, 125.98, 128.12, 128.27, 129.17, 129.24, 139.17, 139.34.

17; ¹H NMR (300 MHz, CDCl₃): 1.4 ~ 1.8 (10H, m), 2.1 ~ 3.0 (32H, m), 2.25 (3H, s), 3.1 (1H, m), 7.1 ~ 7.3 (10H, m). ¹³C NMR (75 MHz, CDCl₃): 22.91, 24.30, 25.87, 29.11, 39.40, 39.68, 45.99, 50.25, 51.18, 52.86, 54.58, 55.02, .55.17, 56.37, 58.49, 59.89, 62.11, 64.89, 125.85, 125.93, 128.09, 128.22, 129.22, 129.34, 139.30, 139.46.

18; ¹H NMR (300 MHz, CDCl₃): 1.4 ~ 1.9 (4H, m), 2.0 ~ 3.0 (29H, m), 2.23 (3H, s), 3.5 ~ 3.7 (4H, m), 7.1 ~ 7.4 (20H, m). ¹³C NMR (75 MHz, CDCl₃): 22.82, 29.08, 40.10, 46.05, 52.39, 52.65, 53.10, 54.43, 55.21, 55.34, 57.05, 58.74, 58.77, 61.80, 64.75, 125.95, 125.97, 126.77, 128.11, 128.17, 128.25, 128.64, 129.27, 129.35, 129.39, 139.42, 139.73.

19; ¹H NMR (300 MHz, CDCl₃): 1.5 ~ 1.9 (4H, m), 2.1 ~ 2.9 (27H, m), 2.23 (6H, s), 2.27 (3H, s), 3.1 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.82, 29.12, 39.48,

6

45.84, 45.99, 46.63, 50.96, 52.66, 53.19, 53.53, 54.55, 55.08, 57.93, 58.71, 59.36, 64.95, 125.92, 128.21, 129.18, 139.39.

20; ¹H NMR (300 MHz, CDCl₃): 0.92, 0.93 (3H, d, *J* = 6.1, 6.1 Hz), 1.5 ~ 1.9 (4H, m), 2.1 ~ 3.0 (22H, m), 2.22, 2.23 (6H, s), 2.25, 2.26 (3H, s), 3.1 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 18.81, 22.89, 29.20, 39.48, 45.84, 46.01, 49.56, 49.84, 51.32, 53.63, 54.56, 55.19, 58.72, 59.68, 64.89, 64.93, 125.94, 128.21, 129.28, 139.51.

21; ¹H NMR (400 MHz, CDCl₃): 0.8 ~ 0.9 (6H, m), 1.5 ~ 1.6 (1H, m), 1.6 ~ 1.9 (5H, m), 2.0 ~ 3.0 (25H, m), 2.23, 2.24 (6H, s), 2.26, 2.27 (3H, s), 3.1 (1H, m), 7.2 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 17.13, 18.66, 22.94, 28.84, 29.26, 39.64, 45.90, 46.03, 51.20, 51.66, 53.60, 54.59, 55.24, 58.77, 58.86, 59.31, 60.57, 64.94, 125.93, 128.21, 129.33, 139.75.

23; ¹H NMR (300 MHz, CDCl₃): 0.87 (9H, s), 1.5 ~ 2.0 (4H, m), 2.1 ~ 2.6 (21H, m), 2.23 (9H, s), 2.7 (1H, m), 2.8 ~ 2.9 (4H, m), 3.1 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 22.83, 26.89, 29.10, 34.52, 39.52, 45.79, 45.85, 51.71, 53.39, 54.46, 54.98, 55.04, 58.68, 60.03, 61.55, 63.52, 64.78, 125.75, 128.05, 129.15, 139.73.

24; ¹H NMR (300 MHz, CDCl₃): 1.4 (1H, m), 1.6 ~ 1.7 (3H, m), 2.0 ~ 2.5 (19H, m), 2.19 (6H, s), 2.26 (3H, s), 2.5 ~ 2.9 (6H, m), 2.9 ~ 3.0 (1H, m), 3.1 (2H, m), 3.22 (1H, dd, *J* = 5.9, 18.8 Hz), 7.0 ~ 7.5 (9H, m), 7.71 (1H, d, *J* = 7.9 Hz), 7.8 (1H, m), 8.1 (1H, m). ¹³C NMR (75 MHz, CDCl₃): 22.86, 29.12, 37.71, 39.22, 45.79, 45.99, 50.15, 51.04, 53.59, 54.49, 55.23, 56.00, 58.69, 59.73, 62.69, 64.85, 124.04, 125.22, 125.26, 125.55, 125.86, 126.78, 127.41, 128.14, 128.60, 129.11, 132.15, 133.83, 135.79, 139.34.

25; ¹H NMR (400 MHz, CDCl₃): 1.5 ~ 2.0 (4H, m), 2.1 ~ 2.9 (25H, m), 2.21 (6H, s), 2.23 (3H, s), 3.1 (1H, m), 3.64 (1H, dd, *J* = 3.2, 11.0 Hz), 7.1 ~ 7.3 (10H, m). ¹³C NMR (100 MHz, CDCl₃): 22.84, 29.25, 38.99, 45.80, 46.00, 50.71, 53.57, 54.53, 55.17, 55.26, 58.66, 59.07,

7

60.50, 64.75, 65.02, 65.70, 125.80, 125.84, 126.97, 127.26, 128.12, 128.16, 129.07, 129.25, 139.38, 143.08.

Liquid-phase synthesis of 27

a) Me₂NH-HCl, DEPC, Et₃N, DMF b) TFA c) OH⁻ d) Boc-Phe, DEPC, Et₃N, DMF e) TFA then OH⁻ f) Boc-Pro, DEPC, Et₃N, DMF g) TFA then OH⁻ h) HO₂CCH₂NMe₂-HCl, DEPC, Et₃N, CH₂Cl₂ i) BH₃-THF

Synthesis of 28

To a mixture of Boc-Leu-H₂O (5.01 g, 20.1 mmol), dimethylamine hydrochloride (1.84 g, 22.6 mmol) and DMF (30 mL), were added DEPC (90%, 3.7 mL, 22.3 mmol) and triethylamine (6.2 mL, 44.5 mmol) at 0 °C, and the mixture was stirred for 30 min. After stirring for 13 hours at room temperature, the reaction mixture was poured into benzene (100 mL) and AcOEt (200 mL). The organic phase was washed with water (100 mLÅ4), 10% aqueous citric acid (100 mLÅ3), water (100 mL), saturated aqueous NaHCO₃ (100 mLÅ2), water (100 mL) and brine, dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a colorless oil (4.96 g).

A mixture of this oil (4.96 g) and TFA (14.6 mL) was stirred for 30 min at room temperature and then TFA was evaporated to give a pale yellow oil, which was crystallized by adding ether. The crystals were collected by filtration and dried to give colorless needles (**28**) (4.82 g, 17.7 mmol). For an analytical sample, **28** was recrystallized from AcOEt. mp 160.5-161.0 °C. [$]_D^{26}$ + 6.57 (*c* 1.05, MeOH). IR (KBr, cm⁻¹): 3452, 1670, 1597, 1529, 1207, 1182, 1129. MS *m/z*: 159. ¹H NMR (300 MHz, D₂O): 0.80 (3H, d, J = 4.8 Hz), 0.82 (3H, d, J = 6.1 Hz), 1.4 ~ 1.6 (3H, m), 2.81 (3H, s), 2.93 (3H, s), 4.3 (1H, m). ¹³C NMR (75 MHz, D₂O): 20.25, 22.22, 23.67, 35.65, 36.75, 38.78, 49.27, 116.27 ($^{1}J = 290$ Hz), 162.67 ($^{2}J = 35$ Hz), 169.81. Anal. Calcd for C₁₀H₁₉N₂O₃F₃: C, 44.1; H, 7.03; N, 10.29. Found: C, 43.97; H, 6.97; N, 10.19.

Synthesis of 29

28 (4.64 g, 17.0 mmol) was basified with saturated aqueous NaHCO₃, and the solution was extracted with CHCl₃ (20 mLÅ9). The combined extracts were dried with anhydrous K₂CO₃, filtered, and concentrated in vacuo to give a colorless oil (2.84 g, quant). To a solution of this oil and Boc-Phe (4.96 g, 18.7 mmol) in DMF (20 mL), were added DEPC (90%, 3.1 mL, 18.6 mmol) and triethylamine (2.6 mL, 18.7 mmol) at 0 °C, and the mixture was stirred for 30 min. After stirring for 12 hours at room temperature, the reaction mixture was poured into benzene (60 mL) and AcOEt (120 mL). The organic phase was washed with water (60 mLÅ4), 10% aqueous citric acid (60 mLÅ3), water (60 mL), saturated aqueous NaHCO₃ (60 mLÅ²), water (60 mL) and brine, dried with Na₂SO₄, filtered and concentrated in vacuo to give a colorless solid. This solid was recrystallized from AcOEt (10 mL)-hexane (50 mL) to give colorless fine needles (5.99 g, 87%). mp 155.5 ~ 156.0 °C. $[]_{D}^{26}$ - 11.9 (*c* 1.14, CHCl₃). IR (KBr, cm⁻¹): 3284, 3218, 1713, 1636. MS *m/z*: 406 (M⁺). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): 0.88 (3H, d, J = 6.4 \text{ Hz}), 0.98 (3H, d, J = 6.4 \text{ Hz}), 1.2 \sim 1.7 (9H, m), 1.40$ (9H, s), 3.1 (2H, m), 3.4 ~ 3.6 (4H, m), 4.4 (1H, m), 4.9 ~ 5.0 (2H, m), 1.40 (9H, s), 1.3 ~ 1.6 (3H, m), 2.93 (3H, s), 3.06 (5H, brs), 4.37 (1H, m), 4.9 ~ 5.0 (2H, m), 6.64 (1H, d, *J* = 7.7 Hz), 7.2 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 21.89, 23.36, 24.51, 28.24, 35.70, 37.01, 38.18, 42.47, 47.24, 55.64, 80.06, 126.84, 128.52, 129.38, 136.55, 155.23, 170.67, 171.79. Anal. Calcd for C₂₂H₃₅N₃O₄: C, 65.16; H, 8.70; N, 10.36. Found: C, 64.94; H, 8.77; N, 10.41.

Synthesis of **30**

A mixture of **29** (5.93 g, 14.6 mmol) and TFA (1.0 mL) was stirred for 30 min at room temperature and TFA was evaporated to give a colorless oil. This oil was basified with saturated aqueous NaHCO₃, and the solution was extracted with CHCl₃. The combined extracts were dried

with anhydrous K_2CO_3 , filtered, and concentrated *in vacuo* to give a colorless oil. To a solution of this oil and Boc-Pro (3.46 g, 16.1 mmol) in DMF (20 mL), were added DEPC (90%, 2.7 mL, 16.2 mmol) and triethylamine (2.3 mL, 16.5 mmol) at 0 °C, and stirred for 30 min. After stirring for 48 hours at room temperature, the reaction mixture was poured into benzene (60 mL) and AcOEt (120 mL). The organic phase was washed with water (60 mLÅ4), 10% aqueous citric acid (60 mLÅ3), water (60 mL), saturated aqueous NaHCO₃ (60 mLÅ2), water (60 mL) and brine, dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a pale yellow amorphous (8.01 g).

After TFA (11.0 mL) was added to the amorphous, the mixture was stirred for 30 min at room temperature and then TFA was evaporated to give a pale yellow oil. This oil was basified with saturated aqueous NaHCO₃, and the solution was extracted with CHCl₃. The combined extracts were dried with anhydrous K₂CO₃, filtered, and concentrated *in vacuo* to give a pale yellow solid. This solid was recrystallized from acetonitrile (5 mL) to give colorless fine needles (4.28 g, 75%). mp 129.5 ~ 130.0 °C. [$_{10}^{26}$ - 39.7 (*c* 1.04, CHCl₃). IR (KBr, cm⁻¹): 3332, 1641, 1513. MS *m/z*: 403 (M⁴). ¹H NMR (300 MHz, CDCl₃): 0.89 (3H, d, *J* = 6.4 Hz), 0.97 (3H, d, *J* = 6.4 Hz), 1.3 ~ 1.7 (6H, m), 1.9 ~ 2.0 (2H, m), 2.68 (1H, m), 2.91 (1H, m), 2.94 (3H, s), 2.99 (1H, dd, *J* = 8.6, 13.8 Hz), 3.07 (3H, s), 3.17 (1H, dd, *J* = 5.5, 14.0 Hz), 3.4 ~ 3.6 (4H, m), 3.69 (1H, dd, *J* = 4.9, 9.3 Hz), 4.67 (1H, dt, *J* = 5.5, 8.5 Hz), 4.92 (1H, dt, *J* = 4.8, 8.6 Hz), 6.85 (1H, d, *J* = 8.4 Hz), 7.1 ~ 7.3 (5H, m), 8.08 (1H, d, *J* = 8.6 Hz). ¹³C NMR (75 MHz, CDCl₃): 21.98, 23.31, 24.59, 25.92, 30.53, 35.73, 36.98, 37.86, 42.32, 47.10, 47.34, 53.53, 60.24, 126.75, 128.36, 129.24, 136.68, 170.58, 171.85, 175.35. Anal. Calcd for C₂₂H₃₄N₄O₃: C, 65.64; H, 8.51; N, 13.92. Found: C, 65.66; H, 8.53; N, 13.92.

Synthesis of **31**

To a stirred suspension of **30** (4.08 g, 10.5 mmol) and *N*,*N*-dimethylglycine hydrochloride (1.60 g, 11.5 mmol) in CH_2Cl_2 (40 mL), were added DEPC (90%, 1.90 mL, 11.4 mmol) and triethylamine (3.20 mL, 23.0 mmol) at 0 °C, and the mixture was stirred for 30 min. After stirring for 13 hours at room temperature, the reaction mixture was poured into saturated aqueous NaHCO₃ (50 mL), and extracted with CH_2Cl_2 (40 mLÅ3). The combined organic extracts were dried with K_2CO_3 , filtered and concentrated *in vacuo* to give a pale yellow oil. This oil was purified by column

chromatography (silica gel, ether / isopropylamine) to give a colorless amorphous (4.85 g, 95%). [$]_{D}^{26}$ - 80.2 (*c* 1.34, CHCl₃). ¹H NMR (300 MHz, CDCl₃): 0.89 (3H, d, *J* = 6.6 Hz), 0.97 (3H, d, *J* = 6.2 Hz), 1.3 ~ 1.6 (3H, m), 1.7 ~ 1.9 (2H, m), 2.30 (6H, s), 2.1 ~ 2.4 (2H, m), 2.93 (3H, s), 2.98 (2H, s), 3.06 (3H, s), 3.0 ~ 3.5 (4H, m), 4.6 (1H, m), 4.7 (1H, m), 4.9 (1H, m), 6.85 (1H, d, *J* = 8.3 Hz), 7.1 ~ 7.3 (5H, m), 7.38 (1H, d, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃, for major rotamer): 21.95, 23.35, 24.57, 24.85, 27.14, 35.75, 37.01, 37.73, 42.30, 45.82, 46.70, 47.29, 54.03, 59.88, 62.02, 126.60, 128.27, 129.24, 137.00, 170.24, 170.27, 171.28, 171.83. IR (film, cm⁻¹): 3294, 1637. MS *m*/*z*: 487 (M⁺). HRMS Calcd for C₂₆H₄₁N₅O₄: 487.3159. Found: 487.3203.

Synthesis of 27

Under Ar atmosphere, BH₃-THF (1.0 *M*, 116 mL, 116 mmol) was added to **31** (4.72 g, 9.68 mmol), and the solution was refluxed for 10 hours. The reaction was quenched by adding MeOH (120 mL) under ice-water cooling, and then the solvents were evaporated. 5% aqueous HCl (60 mL) was added to the residue and the mixture was refluxed for 1 hour. The reaction mixture was basified with K₂CO₃, saturated with NaCl, and extracted with CHCl₃ (20 mL x 3). The combined organic extracts were dried with anhydrous K₂CO₃, filtered and concentrated *in vacuo* to give a colorless oil. This crude product was purified by column chromatography (hexane / isopropylamine) to give a colorless oil (**27**) (2.48 g, 59%). [$]_{\rm D}^{26}$ -4.33 (*c* 1.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃): 0.85 (3H, d, *J* = 6.1 Hz), 0.87 (3H, d, *J* = 5.4 Hz), 1.12 ~ 1.17 (1H, m), 1.24 ~ 1.28 (1H, m), 1.5 ~ 2.0 (7H, m), 2.0 ~ 3.0 (16H, m), 2.16 (6H, s), 2.23 (6H, s), 3.1 (1H, m), 7.2 ~ 7.3 (5H, m). ¹³C NMR (100 MHz, CDCl₃): 22.81, 22.89, 23.18, 24.81, 29.12, 39.59, 42.92, 45.85, 45.89, 50.11, 51.45, 53.27, 53.57, 54.57, 58.74, 60.03, 64.62, 64.95, 125.89, 128.19, 129.26, 139.56. MS *m/z*: 432 (M⁺). IR (neat, cm⁻¹): 3178, 1460. HRMS Calcd for C₂₉H₅₃N₅: 431.3988. Found: 431.3989.

<u>Physical data of products (2a - 2g)</u>

(*S*)-**2a** (46% ee): Daicel Chiralcel OD-H[®], hexane/2-propanol = 30/1, 0.5 mL/min, 254 nm) 25.8 min (*S*-isomer), 31.2 min (*R*-isomer). [$]_D^{24}$ +32.8 (*c* 1.01, CHCl₃). ¹H NMR (300 MHz, CDCl₃): 1.16 (3H, d, *J* = 6.8 Hz), 1.6 ~ 1.8 (4H, m), 2.64 (1H, dd, *J* = 6.2, 12.8 Hz), 2.7 ~ 2.8 (1H, m), 2.9 ~ 3.0 (2H, m), 3.2 ~ 3.4 (3H, m), 7.1 ~ 7.3 (5H, m). ¹³C NMR (75 MHz, CDCl₃): 17.25, 24.09, 25.83, 40.37, 40.50, 45.51, 46.20, 126.05, 128.12, 128.87, 140.08, 174.32. IR (nujol, cm⁻¹): 1633. MS *m/z*: 217 (M⁺). HRMS Calcd for C₁₄H₁₉NO: 217.1467. Found: 217.1472.

2b: see the text.

2c (81% ee): Chiralcel OD-H[®] (Hexane / 2-propanol / diethylamine = 180 / 6 / 0.19, 0.5 mL/min, 254 nm) 29.8 min (minor), 36.3 min (major). [$]_{D}^{24}$ –32.2 (*c* 0.30, CHCl₃). ¹H-NMR (400 MHz / CDCl₃); 1.16 (3H, d, *J* = 6.1 Hz), 1.80 ~ 1.85 (1H, m), 2.1 ~ 2.4 (3H, m), 2.20 (3H, s), 2.6 ~ 2.7 (1H, m), 2.9 ~ 3.0 (2H, m), 3.3 (1H, m), 3.4 (1H, m), 3.5 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C-NMR (100 MHz / CDCl₃); 17.90, 37.34, 40.64, 41.53, 45.30, 45.84, 54.59, 54.84, 126.23, 128.35, 129.05, 140.00, 174.23. IR (neat, cm⁻¹) 1629. MS *m/z*: 246 (M⁺). HRMS Calcd for C₁₅H₂₂N₂O: 246.1732. Found: 246.1727.

2d (79% ee): Chiralcel OD-H[®] (Hexane / 2-propanol = 9 / 1, 0.5 mL/min, 254 nm) 18.2 min (minor), 23.0 min (major). [$]_D^{24}$ –48.0 (*c* 0.66, CHCl₃). ¹H-NMR (400 MHz / CDCl₃); 1.18 (3H, d, *J* = 6.1 Hz), 2.70 (1H, m), 2.9 ~ 3.1 (3H, m), 3.1 ~ 3.2 (1H, m), 3.2 ~ 3.3 (1H, m), 3.4 ~ 3.5 (3H, m), 3.5 ~ 3.7 (2H, m), 7.1 ~ 7.3 (5H, m). ¹³C-NMR (100 MHz / CDCl₃); 17.97, 37.23, 40.76, 41.99, 45.93, 66.33, 66.76, 126.35, 128.37, 129.00, 139.84, 174.38. IR (neat, cm⁻¹) 1638. MS *m*/*z*: 233 (M⁺), 218. HRMS Calcd for C₁₄H₁₉NO₂: 233.1416. Found: 233.1414.

2e (78% ee): Chiralcel AD[®] (Hexane / 2-propanol = 10 / 1, 1.0 mL/min, 254 nm) 8.0 min (minor), 8.7 min (major). []_D²⁴ −62.0 (*c* 1.17, CHCl₃). ¹H-NMR (300 MHz / CDCl₃); 1.14 (3H, d, *J* = 6.4 Hz), 2.64 (1H, dd, *J* = 9.8, 16.2 Hz), 2.79 (3H, s), 2.89 (3H, s), 2.95 ~ 3.05 (2H, m), 7.1 ~ 7.3 (5H, m). ¹³C-NMR (75 MHz / CDCl₃); 17.42, 35.51, 36.94, 37.80, 40.41, 126.09, 128.19, 128.91, 140.12, 175.78. IR (neat, cm⁻¹) 1641, 1495, 1454, 1398, 702. MS *m/z*: 191 (M⁺), 176, 91. HRMS Calcd for C₁₂H₁₇NO: 191.1310. Found: 191.1294.

2f (79% ee): Chiralcel AD[®] (Hexane / 2-propanol = 100 / 1, 0.5 mL/min, 254 nm) 28.5 min (minor), 29.5 min (major). [$]_{D}^{24}$ -65.3 (*c* 0.83, CHCl₃). ¹H-NMR (300 MHz / CDCl₃); 0.96 (3H, t, *J* = 7.1 Hz), 1.02 (3H, t, *J* = 7.1 Hz), 1.16 (3H, d, *J* = 6.6 Hz), 2.63 (1H, dd, *J* = 5.9, 12.8 Hz), 2.8 ~ 2.9 (1H, m), 2.9 ~ 3.1 (1H, m), 3.1 ~ 3.3 (1H, m), 3.3 ~ 3.5 (1H, m), 7.1 ~ 7.3 (5H, m). ¹³C-NMR (75 MHz / CDCl₃); 12.96, 14.61, 18.23, 38.12, 40.42, 40.79, 41.64, 126.09, 128.19, 129.06, 140.26, 175.11. IR (neat, cm⁻¹) 1635, 1452, 701. MS *m*/*z*: 219 (M⁺), 204. HRMS Calcd for C₁₄H₂₁NO: 219.1623. Found: 219.1602.

2g (59% ee): Chiralcel OJ[®] (Hexane / 2-propanol = 100 / 1, 0.5 mL/min, 254 nm) 23.5 min (major), 25.8 min (minor). ¹H-NMR (300 MHz / CDCl₃); 0.90 (3H, t, J = 7.4 Hz), 1.5 ~ 1.8 (6H, m), 2.6 ~ 2.8 (3H, m), 2.91 (1H, dd, J = 9.5, 12.7 Hz), 3.2 ~ 3.5 (3H, m), 7.1 ~ 7.3 (5H, m). ¹³C-NMR (75 MHz / CDCl₃); 12.11, 24.16, 25.79, 25.84, 39.36, 45.39, 46.34, 48.41, 126.05, 128.12, 128.86, 140.18, 173.73. IR (neat, cm⁻¹) 1635, 1449, 702. MS *m*/*z*: 231 (M⁺), 202. HRMS Calcd for C₁₅H₂₁NO: 231.1623. Found: 231.1629.

Absolute configuration determination of 2a

A mixture of (+)-**2a** (46% ee, $[]_D^{24}$ +31.8 (*c* 1.01, CHCl₃), 25 mg, 0.12 mmol) and 5 *N* aqueous HCl was refluxed for 11 hours. After cooling to room temperature, the reaction mixture was basified with 15% aqueous NaOH, and then washed with ether (10 mL x 2). The aqueous layer was acidified with 10% aqueous HCl, and then extracted with CH₂Cl₂ (10 mL x 3). The combined organic extracts were washed with H₂O, dried with Na₂SO₄, filtered and concentrated *in vacuo* to give

-benzyl-propionic acid (13 mg, 68%, [$]_D^{24}$ +8.6 (*c* 0.64, CHCl₃)). Compared with the reported value⁵, the absolute configuration of (+)-**2a** was determined to *S*.

References

- 1) Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. J. Org. Chem. **1990**, *55*, 132-157.
- Shirai, R.; Aoki, K.; Sato, D.; Kim, H.-D.; Murakata, M.; Yasukata, T.; Koga, K. Chem. Pharm. Bull. 1994, 42, 690-693.
- 3) Yasuda, K. Ph.D Thesis; The University of Tokyo, 1997.
- 4) Fréchet, J. M. J.; Nuyens, L. J. Can. J. Chem. 1976, 54, 926-934.
- 5) Schrecker, A. W. J. Org. Chem. 1957, 22, 33-35.